-
[科普]纳米结构改变了微型相机和投影仪
在今天的电脑、电话和其他移动设备中,越来越多的传感器、处理器和其他电子设备在抢夺空间。相机占据了这宝贵空间中很大的一部分:几乎各个电子设备都需要一个或者两三个相机,甚至更多。相机中最占用空间的是镜头。移动设备中的镜头常通过折射来收集和引导入射光,使用透明材料(通常是塑料)的曲线使光线弯曲。因此这些镜头无法再缩小了:要制造一台小型相机,需要一个短焦镜头;但焦距越短,曲率越大,因而中心也越厚。高度弯曲的镜头也会形成各种像差,因此相机模块制造商使用多个镜片来进行补偿,从而增加了相机的体积。对于今天的镜头,相机尺寸和图像质量朝着不同方向发展。使镜头更小更好的唯一方法是使用不同的技术取代折光镜片。 -
广东省计量院攻克射频系统“卡脖子”难题,全面突破了宽带标准天线的技术瓶颈
在省市场监管局指导下,广东省计量院历时五年集体攻关,从科学第一性原理出发,率先在国际上提出“电磁聚波”分立结构、“超构材料”集成结构,攻克了宽带加脊天线的应用频带窄、灵敏度弱及系统阻抗失配等一系列技术难题,并成功研制了两款新型宽频带(700MHz-18GHz,1GHz-28GHz)高增益(5.7dB-13.5dB, 5.1dB-13.0dB)天线,分别实现了原本发散的电磁波定向集聚,相比欧美宽带加脊天线的感知灵敏度增强了2倍以上,并能够根据特种环境需求实现可重构,提升特定频带的感知灵敏度,全面突破了宽带标准天线的技术瓶颈。 -
天华中威科技微波小课堂_探讨信号的谐波失真分析、测量和仿真
当电信号通过设备或电路发送时,会失去或改变其初始特性,产生谐波失真。这种类型的失真会导致信号中出现谐波,而谐波是频率为基频倍数的正弦分量。设计人员的主要目的是消除或尽量减小失真的程度。谐波失真可能发生在任何信号频率上,并且可能由许多不同的因素引起,包括:●电子元件的非线性:大多数电子元件都是非线性的,这意味着输出信号与输入信号不完全成比例。非线性当然会导致谐波的产生。●耗散:电路中的能量耗散会导致谐波的产生和信号劣化。●外部干扰:来自其他信号的干扰可能会使主信号失真。 -
时分复用射频前端高功率微波波形响应分析研究
为研究系统级射频设备高功率微波前门效应,采用注入法对某 4G 基站的滤波器、环形器、低噪放及功放构成的射频前端进行实验研究。结果表明,高功率微波脉冲上升沿和下降沿被射频前端滤波器强烈反 射,脉冲平顶段反射很小。反射波形在上升沿及下降沿呈尖峰、在脉冲中部呈平底,显示高功率微波陡峭的上升沿和下降沿包含的丰富的滤波器带外频率成分被反射,导致通过滤波器的脉冲头尾被削弱。经滤波器后,高功率微波脉冲可由环行器进入上行通道低噪放,进而被反射,环行进入下行通道功率放大器,被再次反射,再环行从注入口输出。实验中监测到了经两次反射环行的高功率微波脉冲。说明在高功率脉冲条件下,原本由环形器隔离的下行通道功率放大器同样会承受上行通道进入的高功率微波脉冲损伤的风险。 -
[技术前沿]110GHz带宽慢光硅调制器
北京大学电子学院王兴军教授、彭超教授、舒浩文研究员联合团队在超高速纯硅调制器方面取得突破,实现了全球首个电光带宽达110GHz的纯硅调制器。这是自2004年英特尔在《自然》期刊报道第一个1GHz硅调制器后,国际上首次把纯硅调制器带宽提高到100GHz以上。日前,相关研究成果以《110GHz带宽慢光硅调制器》为题在线发表于《Science Advances》。